Tetrahedron Letters, Vol.25, No.41, pp 4693-4696, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

DIASTEREOSELECTIVE SYNTHESIS OF α -AMINO- β -HYDROXYACIDS¹

Giuseppe Guanti,^{a*} Luca Banfi,^a Enrica Narisano,^a and Carlo Scolastico^b

^a Istituto di Chimica Organica dell'Università, Centro C.N.R. di Studio sui Diariloidi e loro Applicazioni, Palazzo delle Scienze, Corso Europa, 16132 Genova, Italy

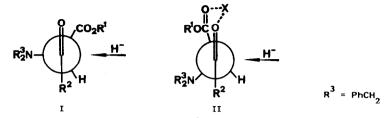
Istituto di Chimica Organica dell'Università, Via Venezian 21, 20133 Milano, Italy

Summary: $threo-\alpha$ -Dibenzylamino- β -hydroxyesters (2) have been synthesised with high diastereoselectivity through the NaBH₄ reduction of α -dibenzylamino- β -oxoesters (4) and then tranformed into $threo-\alpha$ -amino- β -hydroxyacids.

 α -Amino- β -hydroxyacids are derivatives of primary importance both as enzymatic inhibitors,² and as starting material for β -lactam antibiotics synthesis.³ Although some stereoselective syntheses of these compounds have been described,^{2,4} the preparation of the *threo*⁵ isomers still appears to be troublesome.

We have now prepared a series of α -amino- β -hydroxyacids using methyl- or *t*-butyl--N,N-dibenzylglycinate (**1a**,**b**) as starting material. Both the condensation of lithium enolates derived from (**1a**,**b**) with aldehydes (method A) and the acylation of the same enclates followed by NaBH₄ reduction of the resulting β -oxoesters (**4**) (method B), gave α -dibenzylamino- β -hydroxyesters (2) and (**3**) in good yield (see Scheme 1).⁶ However, the acylation-reduction procedure appeared to be much more stereoselective affording *threo* compounds (2) with d.e. up to $\geq 98\%$. Stereochemical results are listed in the Table.⁷

In a typical procedure for method B a solution of the lithium enolate derived from (1) (LDA, THF, -60°C) was added to a THF solution of the appropriate acyl chloride (-60°C) to afford oxoesters (4) in yields ranging from 60 to 90%. The reduction was thence carried out in aqueous EtOH^9 buffered with an excess of NH₄Cl, by addition of an excess of NaBH₄. It is interesting to note that in the absence of NH₄Cl the reaction did not occur.¹⁰

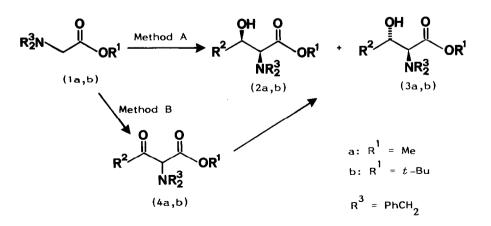

While for methyl esters (4a) the reaction was in every case complete, *t*-butyl esters (4b) could be reduced only in part, and, for $R^2 = t$ -Bu, the reaction did not take place at all. In these cases, probably because of steric inhibition, the rate of reduction was lower and NaBH₄ decomposition became competitive.

The stereochemical course of the reaction is in agreement either with a Felkin model

4693

4694

(figure I) or with a Cram cyclic model in which an electrophile $(X)^{11}$ is chelated by the carbonyl and carboxyl oxygens (figure II).¹³


The relative configuration of (2) for R^2 = Me and Ph was unambiguously established by their conversion into *d*,*l*-threonine and *d*,*l*-phenylserine respectively (*vide infra*). The other products were correlated to these by t.l.c. comparisons (*n*-hexane-diethyl ether) and by means of ¹H and ¹³C n.m.r. spectra.

 α -Dibenzylamino- β -hydroxyesters (2) and (3) were then transformed into corresponding acids (5) by acid hydrolysis (CF₃COOH, 0°C, 70%) for (2b) and (3b), and mild saponification (0.5 N KOH, MeOH-H₂O 7:3, 85%) for (2a) and (3a) (see Scheme 2). In no instance was epimerisation detected by t.l.c. and ¹H n.m.r.. The mildness of these two complementary ester hydrolyses enable the present methodology to be used for a wide range of compounds.

Finally the deprotection of the amino moiety was easily obtained by catalytic hydrogenation 16 (H $_{2},$ Pd/C, 95% EtOH, 70°C, 90%) to give a-amino- β -hydroxyacids (6).

In summary, the acylation-reduction method here reported represents a new synthetic pathway for achieving 90-100% diastereomerically pure $threo-\alpha$ -amino- β -hydroxyacids starting from easily accessible substrates. Further application of N,N-dibenzylglycinates to the diastereo-and enantioselective synthesis of polyfunctionalised compounds of biological interest are being developed in our laboratory.

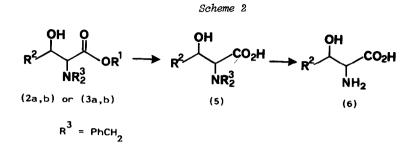


Table. Stereoselective synthesis of α -dibenzylamino- β -hydroxyesters (2) and (3)

Entry	R ²		R ¹	<i>via</i> reductio	on of β -oxoesters	<i>via</i> aldo	l condensation ^a
				yield ^b (%)	$threo:erythro^{c}$	yield ^b (%)	$threo:erythro^{c}$
1	Me	{	Me	81	93: 7	89	57:43
2			ż−Bu	50	89:11	91	60:40
З	Ph	{	Me	70	≥99: 1	75	46:54
4			t−Bu	57	≥99: 1	74	18:82
5	<i>n</i> -C ₆ ^H 13	{	Me	75	96: 4	80	71:29
6			t−Bu	52	89:11	86	46:54
7	\bigcirc -	{	Me	80	95: 5	78	21:79
8			t−Bu	35	90:10	77	16:84
9	t-Bu	{	Me	83	≥99: 1	65	31:69
10			t−Bu	-	-	56	20:80

^aAldehydes were added at -60°C to a solution of lithium enolate derived from (1) (LDA, THF, -60°C). ^bAfter chromatography. ^cDetermined by ¹H n.m.r. or standardised spectrodensitometry (254 nm).

This research was financially assisted by a grant from C.N.R. and Ministero della Pubblica Istruzione.

References and Notes

- 1. Dedicated to Prof. Giuseppe Leandri on the occasion of his 70^{th} birthday.
- 2. T. Nakatsuka, T. Miwa, and T. Mukaiyama, Chem. Lett., 1981, 279; 1982, 145.
- 3. P.G. Mattingly and M.J. Miller, J. Org. Chem., 1983, 48, 3556 and references therein.
- 4. A. Shanzer, L. Somekh, and D. Butina, J. Org. Chem., 1979, 44, 3967.
- 5. We name as three the isomer with the same relative configuration as that of threenine.
- 6. Here only one enantiomeric form is arbitrarily shown although racemates were obtained.
- 7. Also the Mukaiyama reaction (ref. 8) between the trimethylsilyl ketene acetal derived from (1a) and acetaldehyde catalysed by TiCl or BF $_{4}$ C $_{3}$ C was tested. In both cases low stereosel-ectivities were observed.
- 8. T.H. Chan, T. Aida, P.K.W. Lau, V. Gorys, and D.N. Harpp, *Tetrahedron Lett.*, 1979, 4029. 9. 70% (for $R^1 = Me$) or 95% (for $R^1 = t$ -Bu) aqueous EtOH.
- 10. S.H. Pines, S. Karady, and M. Sletzinger, J. Org. Chem., 1968, 33, 1758.
- 11. This can be the sodium ion (see ref. 12) or the ammonium ion (through two hydrogen bonds).
- 12. R.S. Glass, D.R. Deardorff, and H. Henegar, Tetrahedron Lett., 1980, 2467.
- 13. Although previous examples of reduction of α -amino- or α -acetylamino- β -oxoesters are known (see ref. 14), they generally show a preference for the *erythro* isomer. It seemed likely that a crucial role in these reductions had to be played by the size of the protective groups on the nitrogen atom. We argued that a bulky group like dibenzylamino would have favoured the formation of the *threo* isomers i) by a higher discrimination between the amino ("large") and the carboxyl ("medium") groups in I; ii) by a larger differentiation between the two sides of attack in II; iii) by preventing the effectiveness of a Cram cyclic model involving chelation by the amino group (see ref. 15).
- M. Suzuki, T. Iwasaki, K. Matsumoto, and K. Okumura, *Chem. & Ind.*, 1973, 228; W.A. Bolhofer, J. Amer. Chem. Soc., 1952, 74, 5459; see also ref. 9.
- 15. M. Tramontini, Synthesis, 1982, 605.
- 16. L. Velluz, G. Amiard, and R. Heymés, Bulletin Soc. Chim. France, 1955, 201.

(Received in UK 24 July 1984)